
Contents

Get Started

Compatibility

Windows

What is a “web server” exactly?

Common pitfalls & quick fixes

Windows + Docker Desktop

Configuring TVS

Conceptual overview

What’s a YML file?

Reading the example config

Channels and content tutorial

Channels

Channel Properties

Compatibility

Browser Configuration

Keyboard Shortcuts

Overriding Keyboard Shortcuts

Content Engine Primer

Examples

Properties

Images

Properties

http://localhost:4321/guides/get-started/
http://localhost:4321/guides/get-started/#compatibility
http://localhost:4321/guides/get-started/#windows
http://localhost:4321/guides/get-started/#what-is-a-web-server-exactly
http://localhost:4321/guides/get-started/#common-pitfalls--quick-fixes
http://localhost:4321/guides/get-started/#windows--docker-desktop
http://localhost:4321/guides/config-files/
http://localhost:4321/guides/config-files/#conceptual-overview
http://localhost:4321/guides/config-files/#whats-a-yml-file
http://localhost:4321/guides/config-files/#reading-the-example-config
http://localhost:4321/guides/config-files/#channels-and-content-tutorial
http://localhost:4321/reference/channels/
http://localhost:4321/reference/channels/#channel-properties
http://localhost:4321/reference/compatibility/
http://localhost:4321/reference/compatibility/#browser-configuration
http://localhost:4321/reference/keyboard-shortcuts/
http://localhost:4321/reference/keyboard-shortcuts/#overriding-keyboard-shortcuts
http://localhost:4321/engines/primer/
http://localhost:4321/engines/primer/#examples
http://localhost:4321/engines/primer/#properties
http://localhost:4321/engines/images/
http://localhost:4321/engines/images/#properties

Get Started
Television Simulator ‘99 (TVS) is a configurable web-based media frontend that

simulates an analog TV, tuner, receiver and cable headend. It is a web-based

application and needs to be hosted on a web server to be used. There are two

currently supported ways of running TVS:

Via your favorite web server

Through the Docker image

Compatibility

TVS is designed to run on all platforms that support the latest version of the Chromium

browser. Browsers like Google Chrome, Brave, Edge, etc. will work. Firefox and Safari

may run but support is not guaranteed.

Using a Web Server

You can run Television Simulator on any web server that serves static files. This

includes Apache, Nginx, IIS, and more. TVS is distributed as a collection of web files

(HTML, CSS, JS, etc.) and can be hosted anywhere you’d like. Some features like Twitch

integration require TVS to run in a “secure context”, meaning either via HTTPS or

locally on your computer using 🌎 localhost.

Windows

Download and unzip the app

1 Get the latest release from GitHub.

2 Click the latest tvs-{version}.zip file to download it.

Pick a simple folder, e.g. 📁 C:\TVS99

3 In File Explorer, right‑click the zip → Extract All…

https://github.com/zshall/program-guide/releases

Option A — Use the built‑in Windows web server

(IIS)

Good if you want a “set it and forget it” setup that starts with Windows.

Turn on IIS (one‑time)

Point IIS at your folder

To stop later: in IIS Manager, select TVS99 → Stop. To remove it: right‑click the site

→ Remove.

When you open 📁 C:\TVS99, you should see files like 📄 index.html,

placeholders/, etc. (If there’s an extra top‑level folder, go into it; the folder

that contains 📄 index.html is what we’ll serve.)

Press Start, type Windows Features, open Turn Windows features on or

off.

1

Check Internet Information Services (leave default sub‑items as they are) →

OK.

2

Wait for it to install.3

1 Press Start, type IIS and open Internet Information Services (IIS) Manager.

2 In the left tree, right‑click Sites → Add Website…

Site name: TVS99

Physical path: 📁 C:\TVS99 (the folder with 📄 index.html)

Port: 8080 (to avoid conflicts—any free port is fine)

3 Fill in:

4 Click OK. If it didn’t auto‑start, click Start on the right.

5 Open your browser and go to http://localhost:8080/ You should see Television

Simulator ‘99.

http://localhost:8080/

Option B — Use a tiny “temporary” server

(Python)

Great for quick testing or one‑off demos. You run a command, use the app, then close

the window.

Install Python (one‑time)

1. Open the Microsoft Store.

2. Search Python 3 (from the Python Software Foundation) and click Get / Install.

Start a simple server

Keep that PowerShell window open while you’re using the app. Press Ctrl + C in that

window to stop the server.

What is a “web server” exactly?

It’s just a program that shows the files in a folder to your browser as a website.

In the first example, IIS is that program. You told it: “serve 📁 C:\TVS99 on port

8080”.

In the second example, the Python command temporarily serves the same folder

until you close it.

The “root” of your web server is simply the folder you serve (the one with 📄

index.html).

1 Open File Explorer and go to your folder (e.g. 📁 C:\TVS99).

2 Click the address bar, type powershell and press Enter (opens PowerShell in

that folder).

3 Run:

py -m http.server 8000

4 Open your browser and go to http://localhost:8000/

http://localhost:8000/

Common pitfalls & quick fixes

I only see a file list, not the app. Make sure you’re serving the folder that

directly contains 📄 index.html (not a parent folder).

Port already in use. Try a different port (e.g. 8081) when adding the site in IIS

or in your Python command (py -m http.server 8081).

Firewall prompt. If Windows asks, click Allow so your browser can connect to

the local server.

Blank page / 404 on refresh. Try the site root (e.g. 🌎

http://localhost:8080/). If you bookmarked a deep link, go to the homepage

first.

Updating the app later. Stop your server, replace the files in 📁 C:\TVS99 with

the new zip contents, then start again.

Using Docker

Windows + Docker Desktop

Install Docker Desktop and set it to auto-start

when you sign in

Make a folder structure

Create a simple folder for your setup, for example:

1 Install Docker Desktop for Windows (from docker.com).

Note: Docker Desktop starts after you log in; that’s normal on Windows.

Containers marked restart: unless-stopped will auto-start once Docker is

running.

2 Open Docker Desktop → Settings (gear) → General → turn on Start Docker

Desktop when you sign in to your computer. ([Docker Documentation][1])

You can grab or author your 📄 config.tvs.yml as usual.

Inside your config, you can reference files in the content folder using paths like

/content/your-media.jpg.

Create docker-compose.yml

In C:\TVS99\docker-compose.yml, paste:

Why these paths? The image serves the app from a static web server on port 3000,

and it expects your config file to be available from the site root. Mapping to

/home/static/... makes the file available at http://localhost:8080/config.tvs.yml,

and mapping the folder to /home/static/content makes your content reachable at

/content/... as referenced in your config.

If you already run something on port 8080, change "8080:3000" to another free port

like "8081:3000".

Start it up

C:\TVS99\

├─ docker-compose.yml

├─ config\

│ └─ config.tvs.yml ← your TVS config file

└─ content\ ← any media you want TVS to serve

 ├─ images\

 └─ videos\

services:

 tvs:

 image: zshall/television-simulator:latest

 container_name: tvs99

 restart: unless-stopped

 ports:

 - "8080:3000" # visit http://localhost:8080

 volumes:

 - ./config/config.tvs.yml:/home/static/config.tvs.yml:ro

 - ./content:/home/static/content:ro

Everyday use

Start with Windows sign-in: Docker Desktop will launch after you log in

(because you enabled that toggle). Your tvs99 container will auto-start thanks to

restart: unless-stopped.

Stop the app:

View logs:

Update to the latest image later:

1 Open PowerShell.

2 Run:

cd C:\TVS99

docker compose pull

docker compose up -d

3 Open your browser to http://localhost:8080/. You should see Television

Simulator ‘99.

docker compose down

docker compose logs -f

docker compose pull

docker compose up -d

http://localhost:8080/

Common pitfalls & quick fixes

Blank page / 404: Make sure your 📄 path is exactly as mounted

(/home/static/config.tvs.yml) and that your browser can fetch

http://localhost:8080/config.tvs.yml.

Media not found: In your config, reference media using paths like /content/...

(e.g., /content/images/logo.png). Confirm the file really exists under

C:\TVS99\content\.... ([Docker Hub][2])

Port already in use: Change 8080:3000 to another free port.

Compose file location: The ./... paths are relative to the folder that

contains docker-compose.yml—keep your files under C:\TVS99\ so the mounts

work.

Configuring TVS
Now that you’ve got TVS running, it’s time to make it your own! Everything in TVS can

be set up in a YAML-based config file named 📄 config.tvs.yml, located in the root of

your installation directory. This file tells TVS what channels to show, where to find your

media, and how everything should look.

Conceptual overview

Television Simulator simulates the following components of a traditional television

experience:

TV Screen: we simulate a television screen with configurable aspect ratios and

screen effects, such as CRT scanlines, picture noise, picture blur and shadow

masks. Standard definition, high definition and custom resolutions can be set. The

screen will automatically resize to fill available space in your browser window and

works in full screen as well. All of these effects can be disabled or customized,

and depending on the hardware you’re running TVS on you may want to disable

some effects for better performance.

Tuner and Receiver: the look and feel of the on-screen displays can be skinned

to look like a typical built-in TV tuner and a few different models of set top boxes.

Colors can be customized and program information can be shown on-screen (if

available). Volume controls and muting indicators get their own set of on-screen

controls as well. You can mix and match tuner and receiver themes.

Headend: In the cable TV business, a headend is a facility where channels are

received from different sources and combined into the channel lineup that’s

transmitted to you. Television Simulator lets you define your own channels by

number and to decide what content to put on each channel. Most of your

configuration file will likely consist of channels and content.

What’s a YML file?

The TVS configuration file is written in the YAML language. It’s not a programming

language but rather a way to represent data in a human-readable format. YAML is

often used for configuration files because it’s easy to read and write. To make it even

https://en.wikipedia.org/wiki/Cable_television_headend
https://yaml.org/

easier to read and write, you can use a program like Visual Studio Code (known as VS

Code) to edit your config file. VS Code can highlight your YAML syntax and help you

avoid mistakes.

Configuring Visual Studio Code

To configure VS Code for editing YAML files, you can install the YAML extension from

the Visual Studio Code Marketplace. This extension provides features like syntax

highlighting, autocompletion, and validation for YAML files, making it easier to work

with your TVS configuration.

Caution

The YAML extension has a known bug in version 1.18 that can lead to incorrectly

saying that your config file is invalid. This should be fixed in version 1.19, but until

then install version 1.17 of the extension.

Automatic validation

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml

In Visual Studio Code you can validate your config file with the YAML extension

installed by making sure that it begins with the following text which points VS Code to

the TVS schema file:

As TVS evolves, the schema version may change. All previous schemas will remain

available for backward compatibility.

Reading the example config

Television Simulator ships with an example configuration file (📄 config.tvs.yml) that

showcases different features. More example configurations are available in the 📁

config-examples directory, and can be previewed by navigating to 🌎 /examples in TVS

itself.

Tip

It’s a good idea to back up the example config file, as ultimately you’ll be editing

or replacing it with your custom configuration.

Channels and content tutorial

Minimum example

At a minimum, your configuration file must have at least one channel defined.

Channels must have unique channel numbers. To learn more, backup your 📄

config.tvs.yml file and replace it with the following contents:

This configuration has a single channel, channel 1. It has no content so when you start

TVS up with this config you’ll see nothing but static. The - number: 1 line begins

yaml-language-server: $schema=https://gcpw.art/tvs/schemas/5.1.0.json

yaml-language-server: $schema=https://gcpw.art/tvs/schemas/5.1.0.json

channels:

- number: 1

https://tvs.gcpw.art/examples/

defining the channel. Each channel will start with a line like this after the channels:

block which starts the list.

We can make this a bit more interesting by adding some content to the channel.

Channels can only have one top-level content item, but this isn’t as limiting as it

sounds (we’ll get into that later). Add some content like this:

Caution

Note the indentation! YAML requires consistent indentation to work correctly. Here

we’re using two spaces for indentation.

All lines that are indented under the - number: 1 line are part of the channel’s

definition. Here we’ve added the color content engine, which simply displays a solid

background color.

yaml-language-server: $schema=https://gcpw.art/tvs/schemas/5.1.0.json

channels:

- number: 1

 color: blue

Defaults

As you can see in the screenshot, we’re using a standard-definition picture with the

default tuner and receiver themes which provide an old-school look. A bit of picture

noise, scanlines and blur are also enabled by default. Say you’d prefer a more modern

appearance, you can change the defaults in your configuration file (to change the

defaults for everyone) or by using keyboard shortcuts (to change how it looks for your

browser only). You may want to do this to find out how you’d prefer things to look, then

set the defaults in your configuration file.

Picture controls

Let’s try changing the way the simulated TV screen looks. With TVS running, press the

keyboard shortcut Alt2 Alt2 to turn off picture noise. You’ll see a message in the

bottom of the screen showing that the picture changed:

Similarly, if you use Alt1 Alt1 you’ll see the scanlines effect turn on and off. Alt

commands from 1 through 7 are currently implemented and will change picture

settings, so try them out to find out how they work!

In the Keyboard Shortcuts section you can find a full list of keyboard shortcuts and

what they do.

Resetting the picture

You can screw up the picture settings quite a bit, but don’t worry! You can always reset

to the defaults (as defined in the config file) by pressing AltR AltR . This will reset all

picture settings and reload the page.

Graphical Setup

Instead of using keyboard shortcuts you can also use the graphical setup interface.

Press F4 F4 to open the setup menu or go to 🌎 /setup (example). These settings are

only changed for your browser, not for any other users.

http://localhost:4321/reference/keyboard-shortcuts/
https://tvs.gcpw.art/setup

Channels

Channel Properties

number required

Type: number

The channel number. Must be unique across all channels. Negative channels are

allowed and will be treated as line inputs. Channel 0 is displayed as “MENU”.

abbr

Type: string

A short abbreviation for the channel. Will be displayed in program guides and in OSDs

that support it. If not provided it may show up as “UNKNOWN”.

name

Type: string

The full name of the channel.

title

Type: string

The title of the currently playing program.

description

Type: string

A short description of the currently playing program.

icon

Type: string

The URL of an icon to display for the channel. In some OSDs this icon will display when

the info screen is visible.

blur

Type: number

The amount of blur to apply to the channel’s video output, in pixels. Overrides the

global blur setting.

noise

Type: number

The amount of noise to apply to the channel’s video output, from 0.0 to 1.0. Overrides

the global noise setting.

noiseBlendMode

Type: normal | multiply | screen | overlay | darken | lighten | color-dodge | color-

burn | hard-light | soft-light | difference | exclusion | hue | saturation | color |

luminosity | plus-darker | plus-lighter

The CSS blend mode to use for the noise effect. Defaults to screen.

backgroundAudio

Type: string

The URL of an audio file to play in the background while the channel is active.

backgroundAudioOptions

https://developer.mozilla.org/en-US/docs/Web/CSS/mix-blend-mode#syntax

Options for customizing the background audio playback.

volume

Type: number | false

Default: 1

Volume level from 0.0 (muted) to 1.0 (full volume). If set to false or 0, the audio will

be muted.

filterType

Type: 'lowpass' | 'highpass' | 'bandpass' | 'lowshelf' | 'highshelf' | 'notch' |

'allpass'

Type of audio filter to apply; if none is specified, no filtering will be applied.

filterFrequency

Type: number

Default: 0

The frequency, in Hz, for the audio filter.

noise

Type: number | false

Default: 0

Amount of noise to add to the audio, from 0 (none) to 1 (maximum). Set to false to

disable.

corsMitigation

Type: true | false

If enabled, disables audio processing for sources without proper CORS headers. Filter

options will not work if this is set.

description

Type: string

A description of the audio source. Use the station name for live radio, or song and

artist for music.

nowPlayingUrl

Type: string

URL to fetch “now playing” information.

nowPlayingProvider

Type: string

Provider to fetch “now playing” information from. See documentation for supported

providers.

shufflePlaylist

Type: true | false

If the background audio is a playlist, enables shuffling when set to true.

Compatibility
TVS is designed to run on all platforms that support the latest version of the Chromium

browser. Browsers like Google Chrome, Brave, Edge, etc. will work. Firefox and Safari

may run but support is not guaranteed.

Tip

As of publication, Baseline 2023 web features are observed. If you’re using an out

of date browser you may encounter problems.

Browser Configuration

For the best user experience, you’ll likely need to change permission settings to allow

autoplaying audio and video. Since the project is designed around flipping through

channels, clicking a play button would make it less enjoyable, therefore autoplay is

essential.

Without modifying any browser settings, the simulator starts off muted and you must

press M to unmute, which hopefully will meet the browser’s threshold for interaction to

allow videos and audio to play. Similarly, to connect a phone remote you must press R

to display the QR code, which allows audio to play unmuted.

https://developer.mozilla.org/en-US/blog/baseline-evolution-on-mdn/

Keyboard Shortcuts
Press F1 F1 to view the interactive keyboard help page.

Category Combo Description Override ID

General P P Power power

General R R Toggles display of

Remote pairing code

toggleRemotePai

ringCode

General F1 F1 Help (this page) help

General F4 F4 Go to the Setup page setup

General V V Displays version

information

version

General AltV AltV About TVS about

Picture

Adjustments

AltR AltR Reset Picture resetPicture

Picture

Adjustments

Alt1 Alt1 Toggle Scanlines visual

effect

toggleScanlines

Picture

Adjustments

Alt2 Alt2 Toggle Noise visual

effect

toggleNoise

Picture

Adjustments

Alt3 Alt3 Toggle Blur visual effect toggleBlur

Picture

Adjustments

Alt4 Alt4 Toggle Shadow Mask

visual effect

toggleShadowMas

k

Picture

Adjustments

Alt5 Alt5 Toggle Static on

channel change

toggleChangeCha

nnelNoise

Picture

Adjustments

Alt6 Alt6 Toggle Bezels visual

effect

toggleBezels

https://tvs.gcpw.art/help/

Category Combo Description Override ID

Picture

Adjustments

Alt7 Alt7 Toggle automatic

screen scaling

toggleAutoScale

Picture

Adjustments

ShiftAlt4 ShiftAlt4 Toggle Shadow Mask

Type

toggleShadowMas

kType

Picture

Adjustments

ShiftAlt6 ShiftAlt6 Toggle Bezel Type toggleBezelType

Picture

Adjustments

ShiftAltLeft

ShiftAltLeft

Scales screen

horizontal, negative

scaleDownX

Picture

Adjustments

ShiftAltRight

ShiftAltRight

Scales screen

horizontal, positive

scaleUpX

Picture

Adjustments

ShiftAltUp

ShiftAltUp

Scales screen vertical,

positive

scaleUpY

Picture

Adjustments

ShiftAltDown

ShiftAltDown

Scales screen vertical,

negative

scaleDownY

Tuner Up Up Channel Up channelUp

Tuner Down Down Channel Down channelDown

Tuner I I Info info

Tuner 0 0 Numpad0 Numpad0 Number 0 numpad0

Tuner 1 1 Numpad1 Numpad1 Number 1 numpad1

Tuner 2 2 Numpad2 Numpad2 Number 2 numpad2

Tuner 3 3 Numpad3 Numpad3 Number 3 numpad3

Tuner 4 4 Numpad4 Numpad4 Number 4 numpad4

Tuner 5 5 Numpad5 Numpad5 Number 5 numpad5

Tuner 6 6 Numpad6 Numpad6 Number 6 numpad6

Category Combo Description Override ID

Tuner 7 7 Numpad7 Numpad7 Number 7 numpad7

Tuner 8 8 Numpad8 Numpad8 Number 8 numpad8

Tuner 9 9 Numpad9 Numpad9 Number 9 numpad9

Receiver Left Left Volume Down volumeDown

Receiver Right Right Volume Up volumeUp

Receiver M M Mute mute

Video Game

Controls

E E Reset Console -

Video Game

Controls

U U Up -

Video Game

Controls

H H Left -

Video Game

Controls

J J Down -

Video Game

Controls

K K Right -

Video Game

Controls

D D Start -

Video Game

Controls

F F Select -

Video Game

Controls

X X A -

Video Game

Controls

Z Z B -

Category Combo Description Override ID

Video Game

Controls

S S Y -

Video Game

Controls

A A X -

Video Game

Controls

Q Q L -

Video Game

Controls

W W R -

Overriding Keyboard Shortcuts

In your configuration file you can override any keyboard command using the

inputMapping section. For any key you override, the default key will be unassigned.

Note

The browser may have some reserved key combos that can’t be overridden. If

you’re having trouble with a key combo, try another one.

The combos supported should be in lower-case; we use Keymaster’s syntax and key

names. Use the “Override ID” from the table above to find the command you want to

override.

inputMapping:

 volumeUp: q

 volumeDown: a

 channelUp: alt+up

 channelDown: alt+down

https://github.com/madrobby/keymaster?tab=readme-ov-file#supported-keys

Content Engine Primer

Tip

Read this first to understand how to use the reference documentation effectively!

Examples

Each content engine has its own page, and they are structured similarly. We begin with

a brief summary and a screenshot followed by YAML code that shows how to use the

engine in a channel.

For instance, you might see something like this:

To use it, put it in a channel:

Or in a layout:

Or even in a reference:

image: /content/images/my-image.jpg

channels:

- number: 123

 name: My channel

 abbr: EXAMPLE

 image: /content/image/my-image.jpg # <-- the content engine goes here

channels:

- number: 123

 name: My channel

 abbr: EXAMPLE

 loop:

 - image: /content/images/my-image.jpg # <-- here

 duration: 10

 - image: /content/images/my-image-2.jpg

 duration: 5

Properties

After the examples you’ll get an exhaustive list of unique properties for each content

engine. These properties can be used to customize the behavior and appearance of

the engine in your channels and layouts.

Common Properties

Properties that can apply to any engine won’t be displayed on every page but instead

are available below:

interruptsBackgroundAudio

Type:: true | false

Whether the component takes precedence over the channel’s background audio and

mutes it while being displayed.

Shorthand Properties

shorthand properties are marked in blue and are properties that can be set using

shorthand syntax; instead of saying:

you can simply write:

refs:

 ad1:

 image: /content/images/my-image.jpg # <-- here

channels:

- number: 123

 name: My channel

 abbr: EXAMPLE

 ref: ad1

image:

 src: /content/images/my-image.jpg

You can’t provide any other options with this shorthand syntax, but it is useful for

simple cases such as when you just want to display an image or a video without any

additional configuration.

Default Values

If there are multiple options for an optional property the default value will be labeled

like this . Other available values will be in gray.

image: /content/images/my-image.jpg

Images

Television Simulator can display any image your browser can render.

Properties

src shorthand required

Type: string

The URL of the image to display, relative to the content root or absolute.

image: /content/images/my-image.jpg

image:

 src: /content/images/my-image.jpg

 aspectRatioBehavior: cover

aspectRatioBehavior

Type: cover | contain | stretch | repeat | blur

How the image should be displayed in relation to the screen size. contain will fit the

image inside the screen, cover will fill the screen while cropping the image, stretch

will stretch the image to fill the screen, repeat will tile the image, and blur will apply a

blur effect to edges of the image.

	Contents
	Get Started
	Compatibility

	Using a Web Server
	Windows
	Download and unzip the app
	Option A — Use the built‑in Windows web server(IIS)
	Turn on IIS (one‑time)
	Point IIS at your folder

	Option B — Use a tiny “temporary” server(Python)
	Install Python (one‑time)
	Start a simple server

	What is a “web server” exactly?
	Common pitfalls & quick fixes

	Using Docker
	Windows + Docker Desktop
	Install Docker Desktop and set it to auto-startwhen you sign in
	Make a folder structure
	Create docker-compose.yml
	Start it up
	Everyday use
	Common pitfalls & quick fixes

	Configuring TVS
	Conceptual overview
	What’s a YML file?
	Configuring Visual Studio Code
	Automatic validation

	Reading the example config
	Channels and content tutorial
	Minimum example
	Defaults
	Picture controls
	Resetting the picture
	Graphical Setup

	Channels
	Channel Properties
	numberrequired
	abbr
	name
	title
	description
	icon
	blur
	noise
	noiseBlendMode
	backgroundAudio
	backgroundAudioOptions
	volume
	filterType
	filterFrequency
	noise
	corsMitigation
	description
	nowPlayingUrl
	nowPlayingProvider
	shufflePlaylist

	Compatibility
	Browser Configuration

	Keyboard Shortcuts
	Overriding Keyboard Shortcuts

	Content Engine Primer
	Examples
	Properties
	Common Properties
	interruptsBackgroundAudio

	Shorthand Properties
	Default Values

	Images
	Properties
	srcshorthandrequired
	aspectRatioBehavior

